Skip to main content

AVL Tree

A tree is an AVL Tree if it is binary search tree and AVL balanced.

  • We first define the balance factor = #height of right subtree - #height of left subtree
  • AVL balanced means that each node of this tree satisfied balance factor in range [1,1][-1, 1]
  • we also call balance factor in range [1,1][-1, 1] as AVL invariant

AVL have the same methods as the BST do, but need more about keep balanced

Implement

To have AVL Tree, we should modify the implement of BST.

Insert: The same insert with modify the height of node to track if balance factor. After insert, check the AVL invariant if satisfied. If not, then we need to do rebalance/rotation.

Delete: The same delete with modify the height of node to track if balance factor. After delete, check the AVL invariant if satisfied. If not, then we need to do rebalance/rotation.

Rebalance: base on balance factor negative or not, we will swap left/right children with parent; more specifically, we have 4 cases after insert/delete:

  1. insert/delete right, then left tree's right's height > left tree's left's: rotate left about left tree and then rotate right about root
  2. left tree's right's height <= left tree's left's: rotate right about root
  3. insert/delete left, then right tree's left's height > right tree's right's: rotate right about right tree and then rotate left about root
  4. right tree's left's height <= tree's right's: rotate left about root

Rotation:

  1. rotate left: swap root with right tree where root new right = right tree's left and right tree's left = root;
  2. rotate right: swap root with left tree where root new left = right tree's right and left tree's right = root;

Code in python given in lec:

def AVL-INSERT(root, x):
if root is NIL: # found insertion point
root = TreeNode(x) # initial height = 0
elif x.key < root.item.key:
root.left = AVL-INSERT(root.left, x)
root = AVL-REBALANCE-RIGHT(root)
elif x.key > root.item.key:
root.right = AVL-INSERT(root.right, x)
root = AVL-REBALANCE-LEFT(root)
else: # x.key == root.item.key
# Just replace root's item with x -- nothing else changes.
root.item = x
return root

def AVL-REBALANCE-LEFT(root): # Precondition: root is not NIL
# Recalculate height.
root.height = 1 + max(root.left.height, root.right.height)
# Rebalance if necessary.
if root.right.height > 1 + root.left.height:
# Perform double rotation if necessary.
if root.right.left.height > root.right.right.height:
root.right = AVL-ROTATE-RIGHT(root.right)
root = AVL-ROTATE-LEFT(root)
return root

def AVL-REBALANCE-RIGHT(root): # Precondition: root is not NIL
# Recalculate height
root.height = 1 + max(root.left.height, root.right.height)
# Rebalance if necessary.
if root.left.height > 1 + root.right.height:
# Perform double rotation if necessary.
if root.left.right.height > root.left.left.height:
root.left = AVL-ROTATE-LEFT(root.left)
root = AVL-ROTATE-RIGHT(root)
return root

def AVL-ROTATE-LEFT(parent): # Precond: parent != NIL, parent.right != NIL
# Rearrange references.
child = parent.right
parent.right = child.left
child.left = parent
# Update heights.
parent.height = 1 + max(parent.left.height, parent.right.height)
child.height = 1 + max(child.left.height, child.right.height)
# Return new parent.
return child

def AVL-ROTATE-RIGHT(parent): # Precond: parent != NIL, parent.left != NIL
# Rearrange references.
child = parent.left
parent.left = child.right
child.right = parent
# Update heights.
parent.height = 1 + max(parent.left.height, parent.right.height)
child.height = 1 + max(child.left.height, child.right.height)
# Return new parent.
return child

def AVL-DELETE(root, x):
if root is NIL:
pass # nothing to remove
elif x.key < root.item.key:
root.left = AVL-DELETE(root.left, x)
root = AVL-REBALANCE-LEFT(root) # careful with direction!
elif x.key > root.item.key:
root.right = AVL-DELETE(root.right, x)
root = AVL-REBALANCE-RIGHT(root) # careful with direction!
else: # x.key == root.item.key
if root.left is NIL:
root = root.right # includes case root.right is NIL
elif root.right is NIL:
root = root.left
else:
# Select whether to replace root.item with its predecessor or
# its successor, depending on the heights of subtrees.
if root.left.height > root.right.height:
root.item, root.left = AVL-DELETE-MAX(root.left)
else:
root.item, root.right = AVL-DELETE-MIN(root.right)
# Height might have changed, but no rebalancing for root.
root.height = 1 + max(root.left.height, root.right.height)
return root

def AVL-DELETE-MIN(root):
if root.left is NIL:
return root.item, root.right
else:
item, root.left = AVL-DELETE-MIN(root.left)
root = AVL-REBALANCE-LEFT(root)
return item, root

def AVL-DELETE-MAX(root):
if root.right is NIL:
return root.item, root.left
else:
item, root.right = AVL-DELETE-MAX(root.right)
root = AVL-REBALANCE-RIGHT(root)
return item, root


def AVL-SEARCH(root, k):
if root is NIL: # k not in root's subtree
pass # NIL will be returned below
elif k < root.item.key:
root = AVL-SEARCH(root.left, k)
elif k > root.item.key:
root = AVL-SEARCH(root.right, k)
else: # x.key == root.item.key
pass # root is the node we want
return root

Worst-Case Time Complexity

OperationTime Complexity
SearchO(log n)
InsertO(log n)
DeleteO(log n)